Math, asked by margalen1234, 7 months ago

Find the derivative of the following

(A) Y=4t^3 - 5t^2 + 6t-

(B) F(x)= 1/x4 + \sqrt{x}

Answers

Answered by BrainlyIAS
91

Given :

A. y = 4t³ - 5t² + 6t

B. f(x) = 1/x⁴ + √x

To Find :

Derivative of the given

Solution :

A.

y = 4t³ - 5t² + 6t

Differentiate with respect to t on both sides ,

➠  \sf \dfrac{dy}{dt}=\dfrac{d}{dt}(4t^3-5t^2+6t)

\bullet\ \; \sf \dfrac{d}{dx}\big(x^n\big)nx^{n-1}

➠   \sf \dfrac{dy}{dt}  = 4(3t²) - 5(2t) + 6

➠   \sf \dfrac{dt}{dx}  = 12t² - 10t + 6

➠  \sf \dfrac{dy}{dt}   = 2 ( 6t² - 5t + 3 )

So ,

\sf \dfrac{dy}{dt}=2(6t^2-5t+3)\ \; \orange{\bigstar}

B.

\sf f(x)=\dfrac{1}{x^4}+\sqrt{x}

\to \sf f(x)=x^{-4}+\sqrt{x}

Differentiate with respect to x on both sides ,

\to \sf f'(x)=-4(x^{-4-1})+\dfrac{1}{2\sqrt{x}}\\\\\to \sf f'(x)=-\dfrac{4}{x^5}+\dfrac{1}{2\sqrt{x}}\ \; \green{\bigstar}

Answered by Qᴜɪɴɴ
71

Solution:

  • 1st

y = 4 {t}^{3}  - 5 {t}^{2}  + 6t

 \dfrac{dy}{dt}  =  \dfrac{d \: 4 {t}^{3}  - 5 {t}^{2} + 6t }{dt}

 \dfrac{dy}{dt}  = (3 \times 4 {t}^{2} ) - (5 \times 2 \times t) + (6 \times 1 {t}^{0} )

 \red{\bold{\boxed{\large{\dfrac{dy}{dt}  = 12 {t}^{2}  - 10t  + 6}}}}

━━━━━━━━━━━━━━━━━━━

  • 2nd

f(x)=  \dfrac{1}{ {x}^{4} } +  \sqrt{x}

or f(x)  =  {x}^{ - 4}  +  {x}^{ \frac{1}{2} }

Differentiating we get:

 \dfrac{ {x}^{ - 4} }{dx}  +  {x}^{ \dfrac{1}{2} }

 =  - 4 {x}^{ - 4 - 1}  +  \dfrac{1}{2}  {x}^{ \frac{1}{2} - 1 }

 =  - 4 {x}^{ - 5}  +  \dfrac{1}{2}  {x}^{ -  \frac{1}{2} }

 \red{\boxed{\bold{\large{=  \dfrac{ - 4}{ {x}^{5} }  +  \dfrac{1}{2 \sqrt{x} }}}}}

━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━

Formula used:

  •  \dfrac{ {a}^{b}}{da}=  {a}^{ b-1}
Similar questions