Math, asked by dnyanu24, 9 months ago

Find the derivative of the following by using method of first principle tan(2x+3)​

Answers

Answered by AditiHegde
3

The derivative of tan(2x+3) using method of first principle is as follows.

Given,

f(x) = tan (2x + 3)

f(x + h) = tan [ 2 (x + h) + 3 ]

f'(x) =  \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}\\\\=\lim_{h \to 0} \dfrac{tan[2(x+h)+3]-tan(2x+3)}{h}\\\\

= \lim_{h \to 0} \dfrac{tan[(2x+3)+2h] - tan (2x+3)}{h}\\\\= \lim_{h \to 0}  \dfrac{tan[(2x+3)+2h]}{1-tan(2x+3)tan2h}-\dfrac{tan (2x+3)}{h}\\\\= \lim_{h \to 0} \dfrac{tan(2x+3)+tan2h-tan(2x+3)(1-tan2htanx)}{\frac{1-tan(2x+3)tan2h}{h}}\\\\= \lim_{h \to 0} \dfrac{tan2h+tan^2(2x+3)tan2h}{h(1-tan(2x+3)tan2h}\\\\= \lim_{h \to 0} \dfrac{tan2h}{h} \times  \lim_{h \to 0} \dfrac{1+tan^2(2x+3)}{1-tan(2x+3)tan2h}\\\\= \lim_{h \to 0} \dfrac{sin2h}{cos2h}2 \times \dfrac{tan2h}{2h} \times sec^2(2x+3)

\therefore f'(x) = 2sec^2(2x+3)

Similar questions