Math, asked by 16jasleenkaur04, 7 months ago

find the derivative of the following function from first principle f(x)= (x+1)/(x+2)

Answers

Answered by amansharma264
4

EXPLANATION.

Derivative of the function from first principal.

→ f(x) = ( x + 1 ) / ( x + 2 )

 \sf :  \implies \: let \: f(x) =  \dfrac{(x + 1)}{(x + 2)}  \\  \\ \sf :  \implies \: by \: using \: first \: principal \\  \\ \sf :  \implies \:  \: f'(x) =   \lim_{h \to \: 0} \:  \frac{f(x + h) - f(x)6}{h}

 \sf :  \implies \:   \lim_{h \:  \to \: 0} \:  =  \dfrac{ \dfrac{x + h + 1}{x + h + 2} \:  \:    -  \:  \:  \dfrac{x + 1}{x + 2} }{h}  \\  \\  \sf :  \implies \:    \lim_{h \:  \to \: 0} \:   \frac{1}{h} [ \frac{(x + h + 1)(x + 2) - (x + 1)(x + h + 2)}{(x + h + 2)(x + 2)} ] \\  \\  \sf :  \implies \:   \lim_{h \:  \to \: 0} \:  =  \frac{1}{h} [ \frac{( {x}^{2} + 2x + hx + 2h + x + 2) - ( {x}^{2} + hx + 2x + x + h   + 2  }{(x + h + 2)(x + 2)} ]

 \sf : \implies \:    \lim_{h \:  \to \: 0} \:  =  \dfrac{1}{h} [ \dfrac{ {x}^{2} + 3x + hx + 2h + 2 -  {x}^{2}  - hx - 3x -  h - 2 }{(x + h + 2)(x + 2)} ] \\  \\  \sf :  \implies \:   \lim_{h \:  \to \: 0} \:  =  \frac{1}{h} [ \frac{2h - h}{(x + h + 2)(x + 2)} ] \\  \\  \sf :  \implies \:   \lim_{h \:  \to \: 0} \:  =  \frac{1}{ \cancel{h}} [ \frac{ \cancel{h}}{(x + h + 2)(x + 2)} ] \\  \\  \sf :  \implies \:    \lim_{h \to \: 0} \:  =  \frac{1}{(x + h + 2)(x + 2)}

 \sf :  \implies \: put \: the \: value \: of \: h \:  = 0 \\  \\  \sf :   \implies \:   \lim_{h \:  \to \: 0}   = \frac{1}{(x + 0 + 2)(x + 2)}  \\  \\  \sf :  \implies \:  \frac{1}{(x + 2) {}^{2} }  = answer

Similar questions