Math, asked by chauhanaaradhya3, 2 months ago

Find the derivative of the following function from first principles.
y=x^n​

Answers

Answered by BrainlyTwinklingstar
2

Answer

The first principle of derivative :

Suppose f is a real value function defined by \displaystyle \sf {f}^{1} (x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} where ever the limit exists is called derivative of f at x

According to the question,

 \sf f(x) =  {x}^{n}

 \displaystyle \sf f (x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}

 \displaystyle \sf f (x) = \lim_{h\to 0} \frac{(x + h)^{n}  -  {x}^{n} }{h}

 \displaystyle \sf f (x) = \lim_{h\to 0} \frac{{x}^{n}  + n. {x}^{n - 1} + ... +  {h}^{n}   -  {x}^{n}  }{h}

 \displaystyle \sf f (x) = \lim_{h\to 0} \frac{h( n. {x}^{n - 1} + ... +  {h}^{n - 1} )}{h}

 \displaystyle \sf f (x) = \lim_{h\to 0} ( n. {x}^{n - 1} + ... +  {h}^{n - 1} )

 \displaystyle \sf f (x) = n. {x}^{n - 1}

thus,

 \sf \dfrac{d}{dx}  {x}^{n}  = n. {x}^{n - 1}

Similar questions