Math, asked by Anonymous, 24 days ago

Find the derivative of the following function ( it is to be understood that a, b, c and d are fixed non-zero constants and m and n are integers ) :-

 \sf  {(ax + b)}^{n}  {(cx + d)}^{m}

Answer it plz ! ​

Answers

Answered by AestheticSky
66

 \large \bigstar \underline{ \pmb{ \frak{Required  \: Solution : -  }}}

Given that :-

  •  \sf y = {(ax + b)}^{n} {(cx + d)}^{m}

  • where, a and b are constants; m and n are integers.

  • we are asked to find its derivative.

 \\   \maltese \underline{ \sf  \:  Product \:  rule :  -  } \\

  \\   : \implies \sf y = f(x) \times g(x) \\ \\

\\  \sf   :  \implies\frac{dy}{dx}  = f(x) \times  \frac{d}{dx}[g(x) ] + g(x) \times  \frac{d}{dx} [f(x) ] \\ \\

Applying the same concept :-

\\ :\implies \sf y = {(ax + b)}^{n} {(cx + d)}^{m}\\

  \\:  \implies \sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. \dfrac{d}{dx} [ {(cx + d)}^{m} ] +  {(cx + d)}^{m} . \dfrac{d}{dx} [ {(ax + b)}^{n} ]  -  -  - (1)\\ \\

Now, let's find out the derivative of (cx+d)^m

\\ : \implies \sf  \dfrac{d}{dx} [ {(cx + d)}^{m} ] = m. {(cx + d)}^{(m - 1)} .(c + 0) \\ \\

 \\   : \implies \boxed{\sf  \dfrac{d}{dx} [ {(cx + d)}^{m} ] = cm {(cx + d)}^{(m - 1)}} -  -  - (2)  \\\\

Now, let's find out the derivative of (ax+b)^n

 \\ \\ : \implies \sf  \dfrac{d}{dx} [ {(ax + b)}^{n} ] = n. {(ax + d)}^{(n - 1)} .(a + 0) \\\\

   \\ : \implies \boxed{\sf  \dfrac{d}{dx} [ {(ax +b)}^{n} ] = an {(ax + b)}^{(n - 1)}} -  -  - (3)  \\\\

Substituting the values of eq. 2 and eq. 3 in eq. 1

 \\  \\:  \implies \sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. \dfrac{d}{dx} [ {(cx + d)}^{m} ] +  {(cx + d)}^{m} . \dfrac{d}{dx} [ {(ax + b)}^{n} ]\\ \\

 \\ :  \implies \underline{\boxed{\sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. cm {(cx + d)}^{m - 1}  +  {(cx + d)}^{m} . an {(an + b)}^{n - 1}}} \\ \\

That's the required derivative

hope its helps !

Answered by Anonymous
171

Given :-

a , b , c and d are fixed non - zero constants and m , n are integers .

To Find :-

The derivative of  { ( ax + b ) }^{n} { ( cx + d ) }^{m} satisfying the given condition .

Used Concepts :-

  • Leibnitz's Product rule of differentiation which states that for any two functions ( u and v ) ;  \frac{d}{dx} ( u . v ) = u . \frac{dv}{dx} + v . \frac{du}{dx}
  •  \frac{d}{dx} x^{n} = n.{x}^{n - 1 }
  • Chain Rule of differentiation

Solution :-

Let us assume that ;

y =  { ( ax + b ) }^{n} { ( cx + d ) }^{m}

Py Product Rule Differentiating both sides w.r.t."x" ;

=>  \frac{d}{dx} ( y ) = \frac{d}{dx} [ { ( ax + b ) }^{n} . { ( cx + d ) }^{m} ]

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . \frac{d}{dx} ( cx + d )^{m} + { ( cx + d ) }^m . \frac{d}{dx} ( ax + b )^{n}

=> Applying Chain Rule and the second concept above we get ;

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . m{ ( cx + d ) }^{m - 1} . \frac{d}{dx} ( cx + d ) + { ( cx + d ) }^{m} . n{ ( ax + b ) }^{n - 1} .\frac{d}{dx}( ax + b )

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . m{ ( cx + d ) }^{m-1} . [ \frac{d}{dx} ( cx ) + \frac{d}{dx} ( d ) ] + { ( cx + d ) }^{m} . n{ ( ax + b ) }^{n-1} . [ \frac{d}{dx} ( ax ) + \frac{d}{dx} ( b )

=> As a , b , c and d are constant . So ;

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . m{ ( cx + d ) }^{m-1} . [ c . \frac{d}{dx} ( x ) + 0 ] + { ( cx + d ) }^{m} . n{ ( ax + b ) }^{n-1} . [ a . \frac{d}{dx} ( x ) +  0 ]

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . m{ ( cx + d ) }^{m-1} . c + { ( cx + d ) }^{m} . n{ ( ax + b ) }^{n-1} . a

=>  \frac{dy}{dx} = { ( ax + b ) }^{n} . cm{ ( cx + d ) }^{m-1} + { ( cx + d ) }^{m} . an{ ( ax + b ) }^{n-1}

Now. , We are Done :)

Similar questions