Math, asked by ArmylovesBTS1, 1 day ago

Find the derivative of the following function w.r.t.x:
x\times \frac{5}{2}  {e}^{x}

Class 11th; Commerce
Chapter no. : 9th,, Differentiation


PLEASE HELP! I WANT IT URGENTLY T-T

Answers

Answered by lrsmithra17
8

The question has been solved by using product rule.

Attachments:
Answered by anindyaadhikari13
19

SOLUTION:

Given That:

\rm\longrightarrow f(x)=x\times\dfrac{5}{2}e^{x}

Calculating the derivative:

\rm\longrightarrow f'(x)=\dfrac{5}{2}\times\dfrac{d}{dx}(xe^{x})

We know that:

\rm\longrightarrow \dfrac{d}{dx}[f(x)\cdot g(x)]=f'(x)\cdot g(x)+f(x)\cdot g'(x)

Therefore:

\rm\longrightarrow f'(x)=\dfrac{5}{2}\times\bigg[e^{x}\cdot\dfrac{d}{dx}(x)+x\cdot\dfrac{d}{dx}e^{x}\bigg]

\rm\longrightarrow f'(x)=\dfrac{5}{2}\times[e^{x}+xe^{x}]

\rm\longrightarrow f'(x)=\dfrac{5}{2}e^{x}(1+x)

Which is our required answer.

LEARN MORE:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}


anindyaadhikari13: Thanks for the brainliest :)
Similar questions