Math, asked by Chinkoo9736, 1 year ago

Find the derivative of the following functions w.r to x. i) cos-1(4x3 -3x)

Answers

Answered by nirjalsharma100
2

Is the question is cos⁻1(4x³-3x).

Answered by ᎪɓhᎥⲊhҽᏦ
40

Answer:

Find the derivative of the following functions w.r to x

 \rm { \cos}^{ - 1} (4 {x}^{3}  - 3x)

Solution

Let:-

 \rm y =  { \cos}^{ - 1} (4 {x}^{3}  - 3x)

let

 \rm \: x =  \cos\theta

so that

 \rm \theta \:  =   { \cos }^{ - 1} x

Then

 \rm \: y =  { \cos}^{ - 1} (4 { \cos}^{3}  \theta - 3 \cos \theta)

[we know, 4cos³θ - 3cosθ = cos3θ]

 \rm \: y =  { \cos }^{ - 1}  (\cos 3\theta)

 \rm[ We  \: know \:    \: { \cos }^{ - 1} ( \cos \theta) =  \theta]

so,

\rm \: y = 3  \theta

 \rm \: y \:  = 3 { \cos }^{ - 1} x

Differentiating both sides, with respect to x

 \rm \dfrac{dy}{dx}  =  \dfrac{d}{dx} (3 { \cos }^{ - 1}  x)

 \rm \dfrac{dy}{dx}  =3. \dfrac{d}{dx} ( { \cos }^{ - 1} x)

 \rm \dfrac{dy}{dx}  = 3.  \bigg(-  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \bigg)

 \rm \dfrac{dy}{dx}  =  -  \dfrac{3}{ \sqrt{1 -  {x}^{2} } }

Some Derivative Formulae:-

 \tt \dfrac{d}{dx} ( { \sin }^{ - 1}x) =  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

 \tt \dfrac{d}{dx} ( { \cos}^{ - 1}x) =    \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } }

 \tt \dfrac{d}{dx} ( { \tan}^{ - 1}x) =    \dfrac{  1}{1 +  {x}^{2} }   \\

 \tt \dfrac{d}{dx} ( { \cot}^{ - 1}x) =    \dfrac{   - 1}{1 +  {x}^{2} }   \\

 \tt \dfrac{d}{dx} ( { \sec}^{ -1}x) =    \dfrac{   1}{ |x|  \sqrt{ {x}^{2}  - 1} }   \\

 \tt \dfrac{d}{dx} ( { \cosec}^{ -1}x) =    \dfrac{   -  1}{ |x|  \sqrt{ {x}^{2}  - 1} }   \\

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions