Math, asked by Anonymous, 1 month ago

Find the derivative of the following

sin( {x}^{2}  + 5)
cos \sqrt{x}
cos(sin \: x)

Brief explaination needed.

Hoping for great answers ​

Answers

Answered by BrainlyWise
34

\huge\boxed{\mathtt\red{SOLUTION\::-}}

PROVIDED :-

  1. \large\mathtt{sin( {x}^{2} + 5)}
  2. \large\mathtt{cos \sqrt{x}}
  3. \large\mathtt{cos(sin \: x)}

TO FIND :-

• derivatives of the given problems

SOLVING :-

\large\boxed{\mathtt\purple{Answer\:1\::-}}

\large{\mathtt{\frac{d}{dx}(sin(x²+5))}}

Applying the chain rule :-

→ y = sin u

→ u = x²+5

\large{\mathtt{\frac{dy}{dx}=\frac{dy}{du}×\frac{du}{dx}}}

\large{\mathtt{\frac{dy}{dx}=\frac{sin\:u}{du}×\frac{d(x²+5)}{dx}}}

\large{\mathtt{\frac{dy}{dx}= cos\:u×(2x+0)}}

\large{\mathtt{\frac{dy}{dx}=cos(x²+5)×2x}}

\large\boxed{\mathtt\green{∴derivation\: of \:sin(x²+5) \:is\: 2x•cos(x²+5)}}

\large\boxed{\mathtt\purple{Answer\:2\::-}}

\large{\mathtt{\frac{d}{dx}(cos(√x))}}

Applying chain rule :-

→ y = cos u

→ u = √x

\large{\mathtt{\frac{dy}{dx}=\frac{dy}{du}×\frac{du}{dx}}}

\large{\mathtt{\frac{dy}{dx}=\frac{d(cos\:u)}{du}×\frac{d(√x)}{dx}}}

\large{\mathtt{\frac{dy}{dx}= -\:sin(√x)×\frac{1}{2√x}}}

\large\boxed{\mathtt\green{∴the\: derivation\:of\:cos(√x)\:is\:\frac{- sin(√x)}{2√x}}}

\large\boxed{\mathtt\purple{Answer\:3\::-}}

\large{\mathtt{\frac{d}{dx}(cos(sin\:x)))}}

Applying the chain rule :-

→ y = cos u

→ u = sin x

\large{\mathtt{\frac{dy}{dx}=\frac{dy}{du}×\frac{du}{dx}}}

\large{\mathtt{\frac{dy}{dx}=\frac{cos(u)}{du}×\frac{d(sin\:x)}{dx}}}

\large{\mathtt{\frac{dy}{dx}=-sin(u)×cos(x)}}

\large{\mathtt{\frac{dy}{dx}=-sin(sin\:x)×cos(x)}}

\large\boxed{\mathtt\green{∴the\: derivation\:of\:cos(sin\:x)\:is\:-sin(sin\:x)•cos(x)}}

\huge\boxed{\mathtt\green{CONCLUSION\::-}}

Derivatives of the above problems are :-

  1. \large{\mathtt{2x•cos(x²+5)}}
  2. \large{\mathtt{\bold{\frac{-sin(√x)}{2√x}}}}
  3. \large{\mathtt{-sin(sin\:x)•cos(x)}}
Similar questions