Math, asked by pranav338669, 1 month ago

find the derivative of the function 1/√x.
 \frac{1}{ \sqrt{x} }

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{x} }

Let assume that

\rm :\longmapsto\:f(x) = \dfrac{1}{ \sqrt{x} }

can be further rewritten as

\rm :\longmapsto\:f(x) = \dfrac{1}{ {\bigg(x\bigg) }^{\dfrac{1}{2}}}

can be rewritten as

\rm :\longmapsto\:f(x) =  {\bigg(x\bigg) }^{  \: -  \: \dfrac{1}{2}}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx} {\bigg(x\bigg) }^{  \: -  \: \dfrac{1}{2}}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}}

So, using this identity, we get

\rm :\longmapsto\:f'(x) =  \: -  \:  \dfrac{1}{2}{\bigg(x\bigg) }^{ -  \: \dfrac{1}{2}  - 1}

\rm :\longmapsto\:f'(x) =  \:  -  \: \dfrac{1}{2}{\bigg(x\bigg) }^{\: \dfrac{ - 1 - 2}{2}}

\rm :\longmapsto\:f'(x) =  \:  -  \: \dfrac{1}{2}{\bigg(x\bigg) }^{\: \dfrac{ -3}{2}}

\rm :\longmapsto\:f'(x) = \:  -  \:  \dfrac{1}{2{\bigg(x\bigg) }^{ - \dfrac{3}{2} }}

\bf\implies \:f'(x) \:  =  \:  -  \: \dfrac{1}{2x \sqrt{x} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions