Math, asked by ravi220, 1 year ago

find the derivative of the function f(x) =2x²+3x-5 at x=-1.Also prove that f'(0)+3f'(-1)=0

Answers

Answered by Anonymous
10
f(-1)=2(-1)^2+3(-1)-5
=2(1)-3-5
=2-8
=-6

f(0)'+3f'(-1)=0
0-3f'=0
f'=0/-3
f'=0


Anonymous: f=0
Anonymous: 0(0)'+3(0)'(-1)=0
Anonymous: 0+0=0
Anonymous: 0=0
ravi220: haa ho gya
ravi220: thanks broo
Anonymous: so, f(0)'+3(f)'(-1)=0
Anonymous: ok
Anonymous: follow me
Anonymous: bro
Answered by sonuojha211
10

Answer:

f'(-1) = -1.

Step-by-step explanation:

Given:

f(x)=2x^2+3x-5.

The derivative of this function is given by

f'(x) = \dfrac{\mathrm{d}f(x)}{\mathrm{d} x}\\=\dfrac{\mathrm{d}}{\mathrm{d} x}\left(2x^2+3x-5 \right)\\=2\cdot 2x+3\\=4x+3.

At x = -1,

f'(x)= 4\cdot (-1)+3=-4+3=-1..

To prove:

f'(0)+3f'(-1)=0.

We have,

f'(0) = 4\cdot 0+3 = 3.\\f'(-1) = 4\cdot (-1) +3=-1\\\therefore f'(0) +3f'(-1) = 3+3(-1) = 3-3=0.\\

Thus, LHS = RHS, proved.

Similar questions