Math, asked by dakeshkumar, 4 months ago

find the derivative of the function sin²x from first principle​

Answers

Answered by tanusharma26012003
0

Step-by-step explanation:

kqkwkwkwisiwiwiiwiwiwiwiwiwiwiwiiwiwiwiwiwkwkwkwkwkkwiwiwowowkwkwkwkwkwkwkkwkwkwkwkwkkwkwkwkwkwkwkkwkwkwjwjwjwkkwkwkwowowowowoowowowowowowoowiwowowkwowowo

Answered by sajuratnakaran74
0

Step-by-step explanation:

It is tedious (and space-consuming) to use

lim

h

0

on every line, so I hope you'll excuse my approach. We'll simplify the difference quotient first, then find the limit.

(

sin

(

x

+

h

)

)

2

(

sin

x

)

2

h

=

(

sin

x

cos

h

+

cos

x

sin

h

)

2

(

sin

x

)

2

h

=

sin

2

x

cos

2

h

+

2

sin

x

cos

h

cos

x

sin

h

+

cos

2

x

sin

2

h

sin

2

x

h

=

sin

2

x

(

cos

2

h

1

)

h

+

2

sin

x

cos

h

cos

x

sin

h

h

+

cos

2

x

sin

2

h

h

=

sin

2

x

cosh

1

h

(

cosh

+

1

)

+

2

sin

x

cos

h

cos

x

sin

h

h

+

cos

2

x

sin

h

h

sin

h

Taking limit as

h

0

, we get

sin

2

(

0

)

(

0

)

(

cos

0

+

1

)

+

2

sin

x

(

cos

0

)

cos

x

(

1

)

+

cos

0

(

1

)

sin

0

=

0

+

2

sin

x

cos

x

+

0

=

2

sin

x

cos

x

Similar questions