Math, asked by Mister360, 2 months ago

Find the derivative of the function x^2cos x.

Answers

Answered by Aaro28Saxena
2

Answer:

Here's your answer

Attachments:
Answered by amansharma264
8

EXPLANATION.

Derivative of the function x²cosx.

As we know that,

By using the the product rule.

⇒ d[f(x).g(x)]/dx = f(x).d[g(x)]/dx + g(x).d[f(x)]/dx.

By applying this formula in equation, we get.

⇒ d[x²cosx]/dx = x²d[cos x]/dx + cos x d[x²/dx.

⇒ d[x²cosx]/dx = x²(-sin x) + cos x(2x).

⇒ d[x²cosx]/dx = 2xcos(x) - x²sinx.

                                                                                                                             

MORE INFORMATION.

Differentiation of f(x), g(x) type function.

When base and power both are the functions of x that is the function is of the form [f(x)]^g(x).

⇒ y = [f(x)]^g(x).

⇒ ㏒(y) = g(x) ㏒[f(x)].

⇒ 1/y.dy/dx = d g(x).㏒[f(x)]/dx.

⇒ dy/dx = [f(x)]^g(x) . [d[g(x)㏒f(x)]/dx

⇒ That is dy/dx = Q.d/dx (power x ㏒ base).

Similar questions