Math, asked by chvrv2c, 3 months ago

Find the derivative of the function
x^x( cotx)^x w.r.t'.x'​

Answers

Answered by abrez2004ota34f
0

Answer:

x^{x+1} t^{x-1}.(-cosecx)  + cotx^{x}(x^{x})\\

Step-by-step explanation:

Let y = x^{x} .cotx^{x}

\frac{dy}{dx} = \frac{d}{dx}(x^{x} .cotx^{x})

Let

u = x^{x}\\ v = cotx^{x}

Since v = cotx^{x} is a compound function.

So, using chain rule, we get

t = cotx \\v = t^{x}\\\frac{dv}{dx} = \frac{dv}{dt} .\frac{dt}{dx}\\\frac{dv}{dx} = \frac{d}{dt}(t^{x} ) .\frac{d}{dx}(cotx)\\\\\frac{dv}{dx} = x.t^{x-1} .(-cosecx)\\

Using product rule, we get

\frac{d}{dx} (uv) = u\frac{dv}{dx} + v\frac{du}{dx} \\\frac{d}{dx} (uv) = x^{x} \frac{d}{dx}(cotx^{x})  + cotx^{x}\frac{d}{dx}(x^x) \\ \frac{dy}{dx}  = x^{x}(x.t^{x-1} .(-cosecx))  + cotx^{x}(x.x^{x-1}) \\ \frac{dy}{dx} = x^{x+1} t^{x-1}.(-cosecx)  + cotx^{x}(x^{x-1+1})\\\frac{dy}{dx} = x^{x+1} t^{x-1}.(-cosecx)  + cotx^{x}(x^{x})\\

I HOPE YOU LIKE MY ANSWER

PLEASE MARK IT THE BRAINLIEST

Similar questions