Math, asked by ayeshafaisal, 6 months ago

find the derivative of the function:
y=
 \sqrt[3]{4x {}^{2}  + 2x - 7}


Answers

Answered by kevhan
0

Answer:

\frac{8x+2}{3(4x^2+2x-7)^{2/3} }

Step-by-step explanation:

(4x^2 + 2x-7) ^ (1/3)

1/3(4x^2 + 2x-7) ^ (-2/3) * (8x + 2)

\frac{8x+2}{3(4x^2+2x-7)^{2/3} }

Answered by Asterinn
2

We have ti find derivative of the function :-

 \rm \implies \: y = \sqrt[3]{4{x }^{2} + 2x - 7}

Differentiating both sides :-

\rm \implies \:  \dfrac{dy}{dx} =\dfrac{d(\sqrt[3]{4{x }^{2} + 2x - 7})}{dx}

 \sf we \: can \: write \:  \sqrt[3]{4{x }^{2} + 2x - 7 } \: as \: {(4{x }^{2} + 2x - 7)}^{ \frac{ 1}{3} }

\rm \implies \:  \dfrac{dy}{dx} =\dfrac{d{({(4{x }^{2} + 2x - 7)}^{ \frac{ 1}{3} } })}{dx}

\rm \implies \:  \dfrac{dy}{dx} = \dfrac{1}{3}  \times{(4{x }^{2} + 2x - 7)}^{  \frac{ - 2}{3} }  \times  \dfrac{d{({4{x }^{2} + 2x - 7)} }}{dx}

\rm \implies \:  \dfrac{dy}{dx} = \dfrac{1}{3}  \times{(4{x }^{2} + 2x - 7)}^{  \frac{ - 2}{3} }  \times  (8x + 2)

\rm \implies \:  \dfrac{dy}{dx} = \dfrac{  8x + 2}{3{(4{x }^{2} + 2x - 7)}^{  \frac{  2}{3} }}

Answer :

 \bf \: \dfrac{d(\sqrt[3]{4{x }^{2} + 2x - 7})}{dx} = \dfrac{  8x + 2}{3{(4{x }^{2} + 2x - 7)}^{  \frac{  2}{3} }}

__________________

Learn More :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Similar questions