Math, asked by AnanyaBaalveer, 2 days ago

Find the derivative of the given function.
f(x) = 10 \sqrt[5]{ {x}^{3} }  -  \sqrt{ {x}^{7} }  + 6 \sqrt[3]{ {x}^{8} }  - 3

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = 10 \sqrt[5]{ {x}^{3} } - \sqrt{ {x}^{7} } + 6 \sqrt[3]{ {x}^{8} } - 3 \\

can be rewritten as

\rm \: f(x) = 10 {\bigg( {x}^{3} \bigg) }^{\dfrac{1}{5} } - {\bigg( {x}^{7} \bigg) }^{\dfrac{1}{2} } + 6{\bigg( {x}^{8} \bigg) }^{\dfrac{1}{3} } - 3 \\

can be further rewritten as

\rm \: f(x) = 10 {\bigg(x\bigg) }^{\dfrac{3}{5} } - {\bigg(x\bigg) }^{\dfrac{7}{2} } + 6{\bigg(x\bigg) }^{\dfrac{8}{3} } - 3 \\

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}\bigg(10 {\bigg(x\bigg) }^{\dfrac{3}{5} } - {\bigg(x\bigg) }^{\dfrac{7}{2} } + 6{\bigg(x\bigg) }^{\dfrac{8}{3} } - 3\bigg) \\

\rm \: f'(x) = 10\dfrac{d}{dx} {\bigg(x\bigg) }^{\dfrac{3}{5} } - \dfrac{d}{dx}{\bigg(x\bigg) }^{\dfrac{7}{2} } + 6\dfrac{d}{dx}{\bigg(x\bigg) }^{\dfrac{8}{3} } - \dfrac{d}{dx}3 \\

We know,

\color{green}\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

So, using this result, we get

\rm \: f'(x) = 10 \times \dfrac{3}{5} {\bigg(x\bigg) }^{\dfrac{3}{5}  - 1} - \dfrac{7}{2}{\bigg(x\bigg) }^{\dfrac{7}{2}  - 1} + 6 \times \dfrac{8}{3}{\bigg(x\bigg) }^{\dfrac{8}{3}  - 1} - 0 \\

\rm \: f'(x) = 6 {\bigg(x\bigg) }^{ - \dfrac{2}{5}} - \dfrac{7}{2}{\bigg(x\bigg) }^{\dfrac{5}{2}} + 16{\bigg(x\bigg) }^{\dfrac{5}{3} } \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{f'(x) = 6 {\bigg(x\bigg) }^{ - \dfrac{2}{5}} - \dfrac{7}{2}{\bigg(x\bigg) }^{\dfrac{5}{2}} + 16{\bigg(x\bigg) }^{\dfrac{5}{3} }}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Answered by kvalli8519
23

refer the given attachment

Attachments:
Similar questions