Math, asked by ishanbajpai123ozm5mo, 11 months ago

Find the derivative of
√x + 1/√x
by the first principle

Answers

Answered by Sharad001
5

Question :-

 \rm find \: the \: derivative \: of \:  \sqrt{x}  +  \frac{1}{ \sqrt{x} }    \: \: by  \\  \rm \: \: first \: perinciple \:

Answer :-

 \to \boxed{ \rm \:   \frac{dy}{dx} =  \frac{1}{2 \sqrt{x} }   -  \frac{1}{2x \sqrt{x} } } \:

Solution :-

We have and let ,

 \to \rm \: y =  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \\  \\  \bf \: differentiate \: with \: respect \: to \: x \\  \\  \to \rm \:   \frac{dy}{dx}  =  \frac{d}{dx}  \sqrt{x}  +  \frac{d}{dx}  \frac{1}{ \sqrt{x} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm  \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } } \\  \\  \to \rm \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }  +  \frac{d}{dx} \:  \frac{1}{ {x}^{ \frac{1}{2} } }   \\  \\  \to \rm \frac{dy}{dx} =  \frac{1}{2 \sqrt{x} }   +  \frac{d}{dx}  {x}^{  \frac{ - 1}{2} }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm  \because \:  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} } \\  \\  \to \rm \:  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }   -  \frac{1}{2}  {x}^{ \frac{ -  1}{2} - 1 }  \\  \\  \to \rm \: \frac{dy}{dx}  =  \frac{1}{2 \sqrt{x} }  -  \frac{1}{2}  {x}^{ \frac{ - 3}{2} }  \\  \\ \bf we \: can \: write \: it \:  \\  \\  \to \boxed{ \rm \:   \frac{dy}{dx} =  \frac{1}{2 \sqrt{x} }   -  \frac{1}{2x \sqrt{x} } }

Similar questions