find the derivative of x.cosx by using the formulas of the derivatives.
Answers
Answered by
4
Use the formula, d/dx(u*v) = u* d/dx(v) + v* d/dx(u)
d/dx(x*cosx)
= x* d/dx(cosx) + cosx* d/dx(x)
= x*(-sinx) + cosx * 1
= -x.sinx + cosx
d/dx(x*cosx)
= x* d/dx(cosx) + cosx* d/dx(x)
= x*(-sinx) + cosx * 1
= -x.sinx + cosx
Jahnvi97:
Thanks Raksha!
Answered by
3
Okay.... !!
Let , y = xcosx ------(1)
Using product rule ,
d/dx[f(x).g(x)] = f(x).d/dx{g(x)} + g(x).d/dx{f(x)}
Differentiating equation 1 w.r.t. 'x'
dy/dx = x(-sinx) + cosx
dy/dx = cosx - xsinx
Similar questions