Math, asked by SehajbirKang8919, 11 months ago

Find the derivative of x+cosx/tanx with respect to x

Answers

Answered by ashishks1912
64

The derivative of the given expression is \frac{tanx-tanxsinx-xsec^2x-secx}{tan^2x}

Therefore \frac{dy}{dx}=\frac{tanx-tanxsinx-xsec^2x-secx}{tan^2x}

Step by step explanation :

Given that \frac{x+cosx}{tanx}

To find the \frac{dy}{dx} for the given expression  :

Let y=\frac{x+cosx}{tanx}

Differentiating with respect to x

\frac{dy}{dx}=\frac{tanx(1+(-sinx))-(x+cosx)(sec^2x)}{tan^2x} ( by using the formula \frac{u}{v}=\frac{vdu-udv}{v^2} here u=x+cosx and v=tanx )

=\frac{tanx(1-sinx)-(x+cosx)(sec^2x)}{tan^2x}

=\frac{tanx-tanxsinx-xsec^2x-cosxsec^2x}{tan^2x}

=\frac{tanx-tanxsinx-xsec^2x-(\frac{1}{secx})sec^2x}{tan^2x}

=\frac{tanx-tanxsinx-xsec^2x-secx}{tan^2x}

Therefore \frac{dy}{dx}=\frac{tanx-tanxsinx-xsec^2x-secx}{tan^2x}

The derivative of the given expression is \frac{tanx-tanxsinx-xsec^2x-secx}{tan^2x}

Answered by snehasrive13
31

Step-by-step explanation:

above answer will help u

Attachments:
Similar questions