Math, asked by laukikpranjal9912, 10 months ago

Find the derivative of x^logx wet logx.

Answers

Answered by rishu6845
8

Answer:

 \dfrac{d( \:  {x}^{ logx }) }{d( \:  logx )}  =  \: 2 \:  {x}^{ log(x) }  \:  logx

Step-by-step explanation:

To find ----->

derivative \: of \:  {x}^{ logx }  \: with \: respect \: to \:  logx

Concept used ---->

1)

 log( {x}^{m} )  =  \: m \:  logx

2)

 \dfrac{d}{dx} ( \:  {x}^{2} ) = 2x

3)

 \frac{d}{dx} ( logx ) \:  =  \frac{1}{x}

4)

if \: u \: and \: v \: are \: two \: functions \: of \\  \: x \: and \: we \: have \: to \: find \: derivtive \\ of \: u \: with \: respect \: to \: v \: then \\  \dfrac{du}{dv }  =  \dfrac{ \dfrac{du}{dx} }{ \dfrac{dv}{dx} }

Solution---->

let \: u \:  =  {x}^{ logx }  \: and \: v =  logx

now \: u \:  =   {x}^{ logx }

taking \: log \: both \: sides \: we \: get

 logu  =  log( {x}^{ logx } )

 \:  \:  \:  =  logx \:  logx

 \:  \:  \:  =  {( logx) }^{2}

differentiating \: with \: respect \: to \: x \: we \: get

 \dfrac{d}{dx} ( \: logu) \:  =  \frac{d}{dx}  {( logx) }^{2}

 \dfrac{1}{u}  \dfrac{du}{dx}  \:  = 2 { (logx) }^{2 - 1}   \frac{d}{dx} \: ( logx)

 \dfrac{du}{dx}  = u \: 2 \:  logx ( \frac{1}{x} )

 \dfrac{du}{dx}  \:  =  \dfrac{2 \:  {x}^{ logx } \:  logx  }{x}

now \: v \:  =  logx

differentiating \: with \: respect \: to  \\ \: x \: we \: get

 \dfrac{dv}{dx}  =  \dfrac{d}{dx} ( logx)

 \dfrac{dv}{dx}   =  \dfrac{d}{dx} ( logx)

 \dfrac{dv}{dx}  =  \dfrac{1}{x}

now \: derivative \: of \:  {x}^{ logx } with \\  \: respect \: to \:  logx \: is

 \dfrac{du}{dv} \:  =  \dfrac{ \dfrac{du}{dx} }{ \dfrac{dv}{dx} }

  \dfrac{d ({x}^{ logx }) }{d( logx) } =  \dfrac{ \dfrac{2 \:  {x}^{logx} \:  logx }{x}  }{ \dfrac{1}{x} }

= 2 xˡᵒᵍˣ logx

Similar questions