Math, asked by 4274p2017, 4 months ago

find the derivative of x square into e power x


Answers

Answered by kundanpandey3103
1

Answer:

In this case: We know how to differentiate ex (the answer is ex)

...

Using the chain rule to find the derivativeof e^x^2.

ex2► Derivative of ex2= 2xex2e^(x^2)► Derivative of e^(x^2) = 2xex2e x 2► Derivative of e x 2 = 2xex2e to the x squared► Derivative of e tothe x squared = 2xex2

please mark it as brainliest answer

Answered by Anonymous
2

Answer:

x {}^{2} .e {}^{x}  \\  \\ diff .\: with .\: respect .\: to .\: x. \\  \\  \frac{d}{dx} (x {}^{2} .e {}^{x} ) \\  \\  = 2x.e {}^{x}  + x {}^{2} .e {}^{x}  \\  \\  \\ formula \:  \:  \:  -  \:  \:  \:  \frac{d}{dx} (x {}^{2} ) = 2.x {}^{2 - 1}  = 2.x \\  \\  \:  \:  \frac{d}{dx} (e {}^{x} ) = e {}^{x}  \\  \\  \:  \:  \frac{d}{dx} (u.v) = v. \frac{du}{dx}  + u. \frac{dv}{dx}

Similar questions