Math, asked by noobplays000777, 3 months ago

find the derivative of x√x with respect to x using method of first principle​

Answers

Answered by shadowsabers03
4

The first principle of derivative states that the first derivative of the function f(x) is given by,

\displaystyle\longrightarrow f'(x)=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}

Here,

  • f(x)=x\sqrt x=x^{\frac{3}{2}}

Then by first principle, its first derivative is,

\displaystyle\longrightarrow f'(x)=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}

\displaystyle\longrightarrow f'(x)=\lim_{h\to0}\dfrac{(x+h)^{\frac{3}{2}}-x^{\frac{3}{2}}}{h}

\displaystyle\longrightarrow f'(x)=\lim_{h\to0}\dfrac{\left[x\left(1+\frac{h}{x}\right)\right]^{\frac{3}{2}}-x^{\frac{3}{2}}}{h}

\displaystyle\longrightarrow f'(x)=\lim_{h\to0}\dfrac{x^{\frac{3}{2}}\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-x^{\frac{3}{2}}}{h}

\displaystyle\longrightarrow f'(x)=x^{\frac{3}{2}}\lim_{h\to0}\dfrac{\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-1}{h}\quad\quad\dots(1)

Now, we have the following expansion.

\longrightarrow(1+x)^n=1+nx+\dfrac{n(n-1)}{2!}\,x^2+\dfrac{n(n-1)(n-2)}{3!}\,x^3+\,\dots

Subtracting 1,

\longrightarrow(1+x)^n-1=nx+\dfrac{n(n-1)}{2!}\,x^2+\dfrac{n(n-1)(n-2)}{3!}\,x^3+\,\dots

Replacing x by \frac{h}{x} and taking n=\frac{3}{2},

\small\text{$\longrightarrow\left(1+\dfrac{h}{x}\right)^{\frac{3}{2}}-1=\dfrac{3}{2}\left(\dfrac{h}{x}\right)+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)}{2!}\left(\dfrac{h}{x}\right)^2+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)}{3!}\left(\dfrac{h}{x}\right)^3+\,\dots$}

Dividing by h,

\small\text{$\longrightarrow\dfrac{\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-1}{h}=\dfrac{3}{2x}+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)h}{2!\cdot x^2}+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)h^2}{3!\cdot x^3}+\,\dots$}

Taking limit when h\to0,

\displaystyle\small\text{$\longrightarrow\lim_{h\to0}\dfrac{\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-1}{h}=\dfrac{3}{2x}+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)}{2!\cdot x^2}\lim_{h\to0}h+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)}{3!\cdot x^3}\lim_{h\to0}h^2+\,\dots$}

\displaystyle\small\text{$\longrightarrow\lim_{h\to0}\dfrac{\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-1}{h}=\dfrac{3}{2x}+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)}{2!\cdot x^2}(0)+\dfrac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)}{3!\cdot x^3}(0)^2+\,\dots$}

\displaystyle\longrightarrow\lim_{h\to0}\dfrac{\left(1+\frac{h}{x}\right)^{\frac{3}{2}}-1}{h}=\dfrac{3}{2x}

Then (1) becomes,

\displaystyle\longrightarrow f'(x)=x^{\frac{3}{2}}\cdot\dfrac{3}{2x}

\displaystyle\longrightarrow\underline{\underline{f'(x)=\sqrt x}}

Similar questions