Math, asked by anikasharma1637, 6 months ago

find the derivative of xsinx/1+cosx

Answers

Answered by saumyadeeptasen
12

Answer:

(x cos(x) + sin(x) + sin(x) cos(x) + x) / (1 + cos(x))^2

Step-by-step explanation:

Attachments:
Answered by friendmahi89
0

The derivative is \frac{x}{2}\sec^{2} \frac{x}{2} +\tan \frac{x}{2} .

Given,

\frac{x\sin x}{1+\cos x}    ....................................................................... (1)

To find the derivative let us first simplify the given equation (1),

\frac{x2\sin \frac{x}{2} \cos \frac{x}{2} }{1+2\cos^{2}\frac{x}{2} -1}  ................................(from double angle formula of \sin x and \cos x)

\frac{2x\sin \frac{x}{2} \cos\frac{x}{2} }{2\cos^{2}\frac{x}{2} }

\frac{x\sin \frac{x}{2} }{\cos \frac{x}{2} }

x\tan\frac{x}{2}    .................................................................. (2)

Now, on differentiating the simplified equation (2) we get,

\frac{d }{dx}(x\tan \frac{x}{2}) = x\frac{d}{dx}(\tan \frac{x}{2})+\tan \frac{x}{2} (\frac{d}{dx}x   )

\frac{d}{dx} (x\tan \frac{x}{2} )=x\sec^{2} \frac{x}{2} \frac{1}{2} + \tan \frac{x}{2}

\frac{d}{dx} (x\tan \frac{x}{2} )=\frac{x}{2}\sec^{2} \frac{x}{2} +\tan \frac{x}{2}

Learn more about differentiation,

https://brainly.in/question/40115298

Differentiation,

https://brainly.in/question/17335964

#SPJ2

Similar questions
English, 3 months ago