Math, asked by Anonymous, 1 year ago

find the derivative of xsinx

Answers

Answered by AnanyaSrivastava999
5
dxsinx /dx
= x dsinx/dx
= x cosx

Anonymous: i think your answere is wrong
Anonymous: bcoz in my book the answere is xcosx+sinx
Answered by waqarsd
2

Answer:

sinx+xcosx

Step-by-step explanation:

f(x)=xsinx\\\\WKT\\f^I(x)=Lt_{h\to0}\frac{f(x+h)-f(x)}{h}\\\\f^I(x)=Lt_{h\to0}\frac{(x+h)sin(x+h)-xsinx}{h}\\\\f^I(x)=Lt_{h\to0}(sin(x+h)+\frac{xsin(x+h)-xsinx}{h})\\\\f^I(x)=sinx+Lt_{h\to0}(\frac{xsinxcosh+xsinhcosx-xsinx}{h})\\\\Since\;\;sin(a+b)=sinacosb+cosasinb\;\;and \;\;Lt_{h\to0}\frac{sinh}{h}=1\;\;and \frac{cosh-1}{h}=0\\\\f^I(x)=sinx+Lt_{h\to0}(\frac{xsinhcosx}{h}+\frac{xsinx(cosh-1)}{h})\\\\f^I(x)=sinx+xcosx

Hope it Helps

Similar questions