Math, asked by zujanotngullie1, 4 months ago

Find the
derivative
of y=e^x+log x +3x^2-Cos x​

Answers

Answered by kshariharan
0

Answer:

\frac{dy}{dx} = e^x + 1/x + 6x + sinx

Step-by-step explanation:

y=e^x + log x + 3x² - cos x​

\frac{dy}{dx}  = \frac{d}{dx}[e^x + log x + 3x^2 - cos x] = \frac{d}{dx}(e^x) + \frac{d}{dx} (logx) + \frac{d}{dx} (3x^2) + \frac{d}{dx} (-cos x)

differentiate individually

\frac{d}{dx} (e^x) = e^x\\

\frac{d}{dx} (log x) = 1/x\\

\frac{d}{dx}(3x^2) = 3\frac{d}{dx}(x^2) = 3 * 2x = 6x

\frac{d}{dx}(- cos x) = -\frac{d}{dx}(cos x) = -(-sin x) = sin x

apply these values in the equation

we get

\frac{dy}{dx} = e^x + 1/x + 6x + sinx

Similar questions