Physics, asked by piyasharma42493, 9 months ago

find the derivative of y= log e sin x​

Answers

Answered by JaJaJaJannat
7

Question :

Find derivate of

 \tt \: y =  log_{e}(x)  \times  \sin \: x

Solution :

Let \sf\:u=\log_{e}\:x

and v = sinx

then : y = u×v

Now Differentiate with respect to x ,by chain rule

 \tt \dfrac{dy}{dx} =  \sin \: x \times  \dfrac{  d\log_{e}(x)}{dx}  +   \log_{e}(x)  \times  \dfrac{ d\sin \: x}{dx}

 \implies \tt \dfrac{dy}{dx}  =  \sin \: x \times  \dfrac{1}{x}  + log_{e}(x)  \times  \cos \: x

 \implies \tt \dfrac{dy}{dx}  =  \dfrac{ \sin \:x}{x} + \log_{e}(x) \times  \cos \: x

It is the required solution !

Answered by Anonymous
34

Given :

Function

\rm\:y=\log_{e}(x)\times\sin\:x

{\red{\boxed{\large{\bold{Product\:Rule}}}}}

Let u = f(x) and v = g(x) ,then

\sf\:\dfrac{d(uv)}{dx}  =u\dfrac{dv}{dx}+v\dfrac{du}{dx}

Solution :

\sf\:y=\log_{e}(x)\times\sin\:x

Now Differentiate with respect to x ,by chain rule

\sf\implies\dfrac{dy}{dx} =  \sin \: x \times  \dfrac{d\log_{e}(x)}{dx}+\log_{e}(x)  \times  \dfrac{ d\sin \: x}{dx}

\implies\sf\dfrac{dy}{dx}  =  \sin \: x \times  \dfrac{1}{x}  + log_{e}(x)  \times  \cos \: x

\implies\bf\dfrac{dy}{dx}=\dfrac{\sin\:x}{x}+\log_{e}(x)\times\cos\:x

\rule{200}2

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3) \sf\dfrac{d( \tan \: x)}{dx} =   \sec{}^{2}\: x

 \sf4)  \dfrac{d(e {}^{x}) }{dx}  =  {e}^{x}

Similar questions