Math, asked by Babuprakhar6028, 11 months ago

Find the derivative of y=log(e^x sin^5 x)

Answers

Answered by rishu6845
5

Answer:

\boxed{\pink{\huge{1 + 5 \:  \: cot \: x}}}

Step-by-step explanation:

\bold{To \: find}\longrightarrow \\ derivative \: of \:  \\ y =  log( {e}^{x}  {sin}^{5}x )

\bold{Concept \: used}\longrightarrow \\ \boxed{\blue{ \dfrac{d}{dx} (x) = 1}} \\ \boxed{\pink{ \dfrac{d}{dx} (logx) =  \dfrac{1}{x}}}  \\\boxed{\green{  \dfrac{d}{dx} (sinx) = cosx}} \\\boxed{\red{ log {x}^{m}  = m \: logx}}

solution \\ y =  log( {e}^{x} {sin}^{5}x  )

 =  > y =  log( {e}^{x} )  +  log( {sin}^{5} x)

 =  > y = x \:  log(e)  + 5 \: logsinx

 =  > y = x \: (1) + 5 \: log \: sinx

 =  > y = x + log \: sinx

differentiating \: with \: respect \: to \: x

 =  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} (x) + 5 \dfrac{d}{dx} (logsin5x)

 =  >  \dfrac{dy}{dx}  = 1 + 5 \:  \dfrac{1}{sinx}  \dfrac{d}{dx} (sinx)

 =  >  \dfrac{dy}{dx}  = 1 + 5 \dfrac{1}{sinx} cosx

 =  >  \dfrac{dy}{dx}  = 1 + 5 \dfrac{cosx}{sinx}

 =  >  \dfrac{dy}{dx}  = 1 + 5 \: cotx

Similar questions