Math, asked by mahalakshmim0577, 3 months ago

find the derivative of y =secxtanx​

Answers

Answered by BrainlyPopularman
14

GIVEN :

• A Function y = sec(x)tan(x)

TO FIND :

• Value of dy/dx = ?

SOLUTION :

• We know that –

 \\ \bf \implies \dfrac{d(u.v)}{dx} =u \dfrac{dv}{dx} + v\dfrac{du}{dx}\\

• So that –

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\dfrac{d( \tan x)}{dx} +  \tan(x)\dfrac{d( \sec x)}{dx}\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan(x) \{ \sec(x)  .\tan(x) \}\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan(x)\sec(x)  .\tan(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) \{1 + \tan^{2} (x) \}+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) + \tan^{2} (x)\sec(x)+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) + 2\tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)  \{ 1+ 2\tan^{2} (x) \}\\

Answered by sunnykrpatel54021
1

Step-by-step explanation:

GIVEN :–

• A Function y = sec(x)tan(x)

TO FIND :–

• Value of dy/dx = ?

SOLUTION :–

• We know that –

 \\ \bf \implies \dfrac{d(u.v)}{dx} =u \dfrac{dv}{dx} + v\dfrac{du}{dx}\\

• So that –

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\dfrac{d( \tan x)}{dx} +  \tan(x)\dfrac{d( \sec x)}{dx}\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan(x) \{ \sec(x)  .\tan(x) \}\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan(x)\sec(x)  .\tan(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)\sec^{2} (x)+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) \{1 + \tan^{2} (x) \}+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) + \tan^{2} (x)\sec(x)+  \tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x) + 2\tan^{2} (x)\sec(x)\\

 \\ \bf \implies \dfrac{dy}{dx} = \sec(x)  \{ 1+ 2\tan^{2} (x) \}\\

Similar questions