Math, asked by shanavas20, 6 months ago

Find the derivative of
y = sinx.cos X​

Answers

Answered by shresth0910
0

Answer:

cos^2 x - sin^2 x

Step-by-step explanation:

y = cosx(cos x) + (-sinx)sinx

y = cos^2 x - sin^2 x

Answered by Anonymous
0

Solution:-

Given :-

 \rm \implies \: y =  \sin x. \cos x

To find

 \rm \implies \:  \dfrac{dy}{dx}

Now we can write as

 \rm \implies \:  \dfrac{d}{dx}  \sin  x .\cos  x

Using UV Method

 \rm \implies \: u \times  \dfrac{dv}{dx}  + v \times  \dfrac{du}{dx}

 \rm \implies \:  \sin x \times  \dfrac{d \cos x}{dx}  +  \cos x \times  \dfrac{d \sin x}{dx}

 \rm \implies \:  \sin x \times  -  \sin x +  \cos x \times  \cos x

 \rm \implies \:   - \sin {}^{2} x +  \cos ^{2}  x

 \rm \implies \cos ^{2} x -  \sin ^{2} x

Answer

the derivative of y = sinx.cosx is cos²x - sin²x

Similar questions