Physics, asked by punam3762, 9 months ago

find the derivative of y=sinx+tanx​

Answers

Answered by adityajadhav192005
1

Problem decoded dude

answer is in attachment

thank meh :)

Attachments:
Answered by Rohit18Bhadauria
1

Given:

y= sinx+tanx

To Find:

Derivative of y with respect to x or dy/dx

Solution:

We know that,

\longrightarrow\rm{\dfrac{d}{dx}(f(x)\pm g(x))=\dfrac{d}{dx}(f(x))\pm \dfrac{d}{dx}(g(x))}

\longrightarrow\rm{\dfrac{d}{dx}(sinx)=cosx}

\longrightarrow\rm{\dfrac{d}{dx}(tanx)=sec^{2}x}

\rule{190}{1}

On differentiating y with respect to x, we get

\longrightarrow\rm\green{\dfrac{dy}{dx}=cosx+sec^{2}x}

\rule{190}{1}

Formulae to Remember

\longrightarrow\rm{\dfrac{d}{dx}(cosx)=-sinx}

\longrightarrow\rm{\dfrac{d}{dx}(cotx)=-cosec^{2}x}

\longrightarrow\rm{\dfrac{d}{dx}(secx)=secx.tanx}

\longrightarrow\rm{\dfrac{d}{dx}(cosecx)=-cosecx.cotx}

\longrightarrow\rm{\dfrac{d}{dx}(x^{n})=nx^{n-1}}

\longrightarrow\rm{\dfrac{d}{dx}(ln\:x)=\dfrac{1}{x}}

\longrightarrow\rm{\dfrac{d}{dx}(e^{x})=e^{x}}

\longrightarrow\rm{\dfrac{d}{dx}(f(x))=f'(x)}

Similar questions