Find the derivative of y w.rt. x.
2x
.-1sxsi
1+x
1. y = sin
Answers
Answered by
0
Answer:
Step-by-step explanation:
y=(sinx)
cos
−1
x
Taking log on both sides
logy=cos
−1
x.log(sinx)
Differentiating w.r.t x,
y
1
(
dx
dy
)=cos
−1
x.
dx
d
[log(sinx)]+log(sinx)
dx
d
(cos
−1
x)
=cos
−1
x.[
sinx
1
.cosx]+log(sinx).[
1−x
2
−1
]
y
1
(
dx
dy
)=cos
−1
x.cotx+log(sinx)[
1−x
2
−1
]
[∵
dx
d
(logx)=
x
1
dx
d
cos
−1
x=
1−x
2
−1
]
∴
dx
dy
=y[cos
−1
x.cotx+log(sinx).[
1−x
2
−1
]]
dx
dy
=(sinx)
cos
−1
x
[cos
−1
x.cotx−
1−x
2
log(sinx)
Similar questions