Math, asked by mar781705, 3 months ago

find the derivative of y=x4(5sinx-3cosx)​

Attachments:

Answers

Answered by nusrathcassim
23

Answer:

hope you can understand

Attachments:
Answered by syed2020ashaels
0

As per tha data given in the above question .

We have to find the derivative of given question.

Now ,

By the differentiation we have to solve this above question.

Differentiation is a method of finding the derivative of a function. Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables.

Solution:

y =  {x}^{4} (5 \: sin \: x - 3 \: cos \: x)

Differentiate with respect to x ,

 \frac{dy}{dx}  =  \frac{d \: }{dx} ({x}^{4} (5 \: sin \: x - 3 \: cos \: x))

By using product rule of derivative,

Let u = x⁴ and v= (5 sin x - 3 cos x)

 \frac{d}{dx}(uv)  =  \frac{d(u)}{dx} .v + u.\frac{d(v)}{dx}  \:  \:  \:  \: .....(1)

Now put the values in (1) ,

\frac{d}{dx}y  =  \frac{d( {x}^{4} )}{dx} . (5 \: sin \: x - 3 \: cos \: x) +  \:  {x}^{4} \times  \frac{d(5 \: sin \: x - 3 \: cos \: x))}{dx}

By using some formulaes,

 \frac{d}{dx}  {x}^{n}  = n \:  {x}^{n - 1} \:  \frac{d}{dx}  x

 \frac{d}{dx}sin \: x  = cos \: x]

\frac{d}{dx}cos \: x  =  - sin \: x

STEP-1

\frac{d}{dx}y  =  ( 4{x}^{3} ). (5 \: sin \: x - 3 \: cos \: x) +  \:  {x}^{4} \times  (5 \: cos \: x - 3 \: ( - sin \: x))

STEP-2

\frac{d}{dx}y  =   {x}^{3} (4. (5 \: sin \: x - 3 \: cos \: x) +  \:  {x}\times  (5 \: cos \: x  +  3 \:  sin \: x)

STEP-3

\frac{d}{dx}y  =   {x}^{3} (20\: sin \: x - 12 \: cos \: x+  \: 5 x\: cos \: x  +  3x \:  sin \: x)

Hence,

The derivate of y= x⁴(5 sinx -3 cos x) is

\frac{d}{dx}y  =   {x}^{3} (20\: sin \: x - 12 \: cos \: x+  \: 5 x\: cos \: x  +  3x \:  sin \: x)

Project code #SPJ2

Similar questions