Math, asked by umanzoor761, 1 year ago

Find the derivative ofcosec by using first principle of derivative

Answers

Answered by Anonymous
21

Given:  \rm f(x) = cosec(x)

To find: derivative of given function

Solution:

Using the definition of first principles we have,

  \tt f \prime(x) = \lim \limits_{h \to0} \dfrac{f(x + h) - f(x)}{h}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{ cosec(x + h) - cosec(x)}{h}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{  \frac{1}{sin(x + h)} -  \frac1{sin(x)}}{h}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{sin(x) - sin(x + h)}{h \: sin(x + h)sin(x)}

Now using the identity:-

  • sin(A) - sin(B) = 2sin(A-B/2) cos(A+B/2)

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{2 \: sin( \frac{x - x - h}{2}) \cdot \: cos( \frac{x + x  + h}{2})}{h \: sin(x + h)sin(x)}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{2 \: sin( \frac{ - h}{2}) \cdot \: cos( x + \frac{h}{2})}{h \: sin(x + h)sin(x)}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{ - 2 \: sin( \frac{h}{2}) \cdot \: cos( x + \frac{h}{2})}{h \: sin(x + h)sin(x)}

  \tt  \implies f \prime(x) = \lim \limits_{h \to0} \dfrac{ -  \not2 \: sin( \frac{h}{2}) \cdot \: cos( x + \frac{h}{2})}{ \not 2 \cdot \frac{h}{2} \:  sin(x + h)sin(x)}

  \tt  \implies f \prime(x) =\lim \limits_{h \to0} \dfrac{sin( \frac{h}{2} )}{ (\frac{h}{2}) }  \cdot \lim \limits_{h \to0} \dfrac{  - cos( x + \frac{h}{2})}{ sin(x + h)sin(x)}

Using the standard limit:-

  • lim(x → 0) sinx/x = 1

  \tt  \implies f \prime(x) =\lim \limits_{h \to0} \dfrac{  - cos( x + \frac{h}{2})}{ sin(x + h)sin(x)}

  \tt  \implies f \prime(x) = \dfrac{  - cos( x )}{ sin(x)sin(x)}

  \tt  \implies f \prime(x) =- cosec( x ) \: cot(x)

Hence the derivative of cosec(x) is - cosec(x) cot(x).

Answered by ImpressAgreeable4985
0

Hence, we have derived the derivative of cosec x to be -cot x cosec x using the first principle of differentiation.

...

Derivative of Cosec x Proof By First Principle

cosec x = 1/sin x.

limh→0(sin(x+h)−sinx)h=cosx lim h → 0 ( sin ⁡ ( x + h ) − sin ⁡ x ) h = cos ⁡ x.

cot x = cos x/sin x.

Similar questions