Math, asked by Anonymous, 10 months ago

Find the derivative :
 \sf  y=  \{ x  +  \sqrt{ {x}^{2} +  {a}^{2}  }  \: \}^{n}  \\  \\  \bf find \:  \:  \frac{dy}{dx}

Answers

Answered by Anonymous
12

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\implies{\sf{\green{y =  \big( x  +  \sqrt{ {x}^{2} +  {a}^{2}  }\big) ^{n} }}}}

{\bf{\blue{\underline{Now:}}}}

{\sf{\underline{\blue{ \star  \: differentiate \: w.r.t.x,}}}} \\

{\bf{  \frac{dy}{dx} = n \big( x +  \sqrt{ {x}^{2} +  {a}^{2}  } \big) ^{n - 1}   \frac{d}{dx}  \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big)}} \\  \\

{\implies{\bf{ n \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big) ^{n - 1}  \times  \big [ 1 + ( {x}^{2} +  {a}^{2}) ^{ \frac{1}{2} } \big]  }}} \\  \\

{\implies{\bf{ n \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big) ^{n - 1}  \times  \big [ 1 +  \frac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } }  \ \times  \frac{d}{dx} ( {x}^{2}   +  {a}^{2})   \big]  }}} \\  \\

{\implies{\bf{ n \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big) ^{n - 1}  \times  \big [ 1 +  \frac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } }  \ \times  (2x + 0)   \big]  }}} \\  \\

{\implies{\bf{ n \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big) ^{n - 1}  \times  \big [  \frac{ \sqrt{ {x}^{2}  +  {a}^{2} }  + x}{ \sqrt{ {x}^{2}  +  {a}^{2} } }   \big]  }}} \\  \\

{\implies{\bf{  \frac{n \big(x +  \sqrt{ {x}^{2}  +  {a}^{2} }  \big) ^{n} }{ \sqrt{ {x}^{2} +  {a}^{2}  } } }}} \\  \\

{\bf{\blue{hence \:  \frac{dy}{dx}   =  \frac{n(x +  \sqrt{ {x}^{2} +  {a}^{2} } )^{n} }{ \sqrt{ {x}^{2}  +  {a}^{2} } } }}}\\ \\

{\orange{ \boxed{{ \sf{ \star \: Formula \: used}}}}}\\

{\green{{ \sf{ \star \:  \frac{d}{dx}( {x}^{n) }   = n {x}^{n - 1} }}}}

Answered by Anonymous
3

Step-by-step explanation:

dy \div dx = n(x +  \sqrt{x { + a {) {n \div  \sqrt{x { + a {?}^{2} }^{2} } }^{?} }^{2} }^{2} }

have a great day NANBA

Attachments:
Similar questions