Math, asked by Anonymous, 17 days ago

Find the derivative using the first principle of f(x) = 3sin(2x+1)

Answers

Answered by 72HurricanE
2

f(x) =  \sin(2x + 3)

f(h + x) = \sin(2x + 2h + 3)

f′  \: x =  \frac{lim}{h→0}  \:  \: \:  \frac{f(x + h) - f(x)}{h}

 =  \frac{lim}{h→0}   \:  \:  \frac{ \sin(2x + 2h + 3 )  -  \sin(2x + 3) }{h}

 =  \frac{lim}{h→0}  \:  \:  \frac{2 \sin(h) \cos(2x + h + 3)  }{h}

 = 2  \frac{lim}{h→0} ( \frac{ \sin(h) }{h}) \cos(2x + h + 3)

 = 2 \cos(2x + 3)

Similar questions