Math, asked by harshalabhujade25, 4 months ago

find the derivative with respect to x of function √2-3x²​

Answers

Answered by shiwangsir
2

Answer:

this is perfect answer of ur question

Attachments:
Answered by Anonymous
11

Given expression,

 \sf y =  \sqrt{2 -  {3x}^{2} }

Differentiating w.r.t x,

 \longrightarrow \sf \:  \dfrac{dy}{dx}  =  \dfrac{d( \sqrt{2 -  {3x}^{2} }) }{dx}  \\  \\  \longrightarrow \sf \:  \dfrac{dy}{dx}  =  \dfrac{1}{\sqrt{2 -  {3x}^{2}}} \times  \dfrac{d(2 - 3 {x}^{2} )}{dx}  \\  \\ \longrightarrow \sf \:  \dfrac{dy}{dx}  =  \dfrac{1}{\sqrt{2 -  {3x}^{2}}}  \bigg \{ \dfrac{d(2 )}{dx} -  \dfrac{d(3x {}^{2} )}{dx}  \bigg  \} \\  \\ \longrightarrow \sf \:  \dfrac{dy}{dx}  =  -  \dfrac{6x}{\sqrt{2 -  {3x}^{2}}}

The derivative of the above expression is -6x/√2 - 3x^2.

Formula Used :

 \sf  \dfrac{d( \sqrt{x} )}{dx}  =  \dfrac{1}{2 \sqrt{x} }

Similar questions