Math, asked by Anonymous, 10 months ago

Find the Derivative with respect to x
 \rm y =  {a}^{ (\sin {}^{ - 1} x) {}^{2} } \\  \\  \rm \: find \:  \:   \dfrac{dy}{dx}

Answers

Answered by BrainlyPopularman
40

ANSWER :

GIVEN :

 \\ \implies  { \bold{ y = {a}^{ (\sin ^{ - 1} x)^{2} }}}  \\

TO FIND :

 \\ \implies  { \bold{ \dfrac{dy}{dx}  = ? }}  \\

SOLUTION :

 \\ \implies  { \bold{ y = {a}^{ (\sin ^{ - 1} x)^{2} }}}  \\

• Let's take log on both sides –

 \\ \implies  { \bold{  log(y) =  log [ {a}^{ (\sin ^{ - 1} x)^{2}  }]}}  \\

• Using identity –

 \\  \bigstar \:  \large { \orange{ \boxed{ \bold{  log( {a}^{x} ) =  (x)log (a)}}}}  \\

• So that –

 \\ \implies  { \bold{  log(y) = { (\sin ^{ - 1} x)^{2}  } log (a)}}  \\

• Now Differentiate with respect to 'x'

 \\ \implies  { \bold{  \dfrac{1}{y}  \frac{dy}{dx}   =   log(a) [2( {sin}^{ - 1} (x) \times  \dfrac{1}{ \sqrt{1 -  {x}^{2} } } ] }}   \\

 \\ \implies  { \bold{  \dfrac{dy}{dx}   = y  [ log(a)  \{2( {sin}^{ - 1} (x) \times  \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \} ] }}   \\

 \\ \implies  { \bold{  \dfrac{dy}{dx}   = [{a}^{ (\sin {}^{ - 1} x) {}^{2} } ] [ log(a)  \{2( {sin}^{ - 1} (x) \times  \dfrac{1}{ \sqrt{1 -  {x}^{2} } } \} ] }}   \\

 \\ \implies  \large { \red{ \boxed{ \bold{  \dfrac{dy}{dx}   = [{a}^{ (\sin {}^{ - 1} x) {}^{2} } ] [  \dfrac{2 log(a). {sin}^{ - 1} (x) }{ \sqrt{1 -  {x}^{2} } }  ] }}}}   \\

 \rule{210}{2}

USED FORMULA :–

 \\ { \green{ \bold{(1) \:  \:  \frac{d[kf(x)] }{dx} = k \frac{d [f(x)] }{dx} \:  \:  \:  \: [where \:  \: k \:  \: is \:  \: constant] }}}

 \\ { \green{ \bold{(2) \:  \:  \frac{d[ {sin}^{ - 1}(x) ] }{dx} =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  }}}

 \\ { \green{ \bold{(3) \:  \:  \frac{d ( {x}^{n} ) }{dx} = n {x}^{n - 1} }}}

 \\ { \green{ \bold{(4) \:  \:  \frac{d [ log(x) ]}{dx} =  \frac{1}{x}  }}}

 \rule{210}{2}

Answered by Anonymous
60

{\underline{\sf{Given\: Function}}}

\sf{y={a}^{ (\sin {}^{-1} x) {}^{2}} }

{\underline{\sf{To\:Find}}}

{\sf{\dfrac{dy}{dx}}}

{\underline{\sf{Solution}}}

We have , \bf y={a}^{ ( {sin}^{-1} x){}^{2}} }

Now take log on both sides

\sf{\log\:y=\log\:{a}^{ (\sin {}^{-1} x) {}^{2}}}

\sf{\log\:y=(\sin {}^{-1} x) {}^{2}\log a }

Now ,Differentiate with respect to x , by chain rule .

\implies \bf \frac{1}{y} \times \frac{dy}{dx} = (log\:a \times 2 sin{}^{-1}x) \times \frac{1}{\sqrt{1-x{}^{2}}}

\implies \bf \frac{dy}{dx}= 2y \times log\:a \times \frac{sin{}^{-1}x }{ \sqrt{1-x{}^{2} }}

\implies \bf \frac{dy}{dx} =2 {a}^{ (\sin {}^{-1} x) {}^{2}} \times log\:a \times \frac{sin{}^{-1}x }{ \sqrt{1-x{}^{2} }}

\rule{200}2

Formula's used :

\sf{ 1)\dfrac{\log\:x}{dx}=\dfrac{1}{x}}

\bf 2)\: \dfrac{sin^{-1}x}{dx} = \dfrac{1}{(\sqrt{1- {x}^{2}})}

Chain rule :

Let y = f(t) ,t= g(u) and u = m(x) ,then

 \sf \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Similar questions