Math, asked by XCutieRiyaX, 6 hours ago

find the derivative with respect to x
y= cosec (2sin x)
use chain rule

Answers

Answered by lavkushhome07
1

Answer:

I hope this is helpful for you

Step-by-step explanation:

Har gali aur chauk utsah se bhara hai Dharti ka rang bhagava hai Aasman ka rang Suna raha hai badhai Ho aaj dashara hai

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = cosec(2sinx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} cosec(2sinx)

We know

\boxed{\tt{ \dfrac{d}{dx}f[g(x)] = f'[g(x)]\dfrac{d}{dx}g(x)}}

and

\boxed{\tt{ \dfrac{d}{dx}cosecx  \: = \:   -  \: cosecx \: cotx}}

So, on substituting the values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  - cosec(2sinx)cot(2sinx)\dfrac{d}{dx}(2sinx)

\rm :\longmapsto\:\dfrac{dy}{dx} =  -2 cosec(2sinx)cot(2sinx)\dfrac{d}{dx}(sinx)

\rm :\longmapsto\:\dfrac{dy}{dx} =  -2 cosec(2sinx) \: cot(2sinx) \: cosx

Hence,

\rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  -2 cosec(2sinx) \: cot(2sinx) \: cosx}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions