Math, asked by riyarajeev, 6 months ago

find the derivative (x + tan x)(x ^ 2 + 1)​

Answers

Answered by BrainlyPopularman
28

GIVEN :

• A function → (x + tan x )( x² + 1 )

TO FIND :

• Differentiate form = ?

SOLUTION :

• Let the function –

  \\ \tt\implies P = (x +  \tan x)( {x}^{2} + 1) \\

  \\ \tt\implies P =  {x}^{2} (x +  \tan x) + 1(x +  \tan x) \\

  \\ \tt\implies P =  {x}^{3} +  {x}^{2} \tan x+ x +  \tan x \\

• Now Differentiate with respect to 'x' –

  \\ \tt\implies  \dfrac{dP}{dx} =  \dfrac{d}{dx}({x}^{3} +  {x}^{2} \tan x+ x +  \tan x)\\

  \\ \tt\implies  \dfrac{dP}{dx} =  \dfrac{d({x}^{3})}{dx} +  \dfrac{d({x}^{2} \tan x)}{dx} + \dfrac{d(x)}{dx} +  \dfrac{d(\tan x)}{dx}\\

• Using identity –

  \\ \large\longrightarrow \: { \boxed{ \tt  \dfrac{d({x}^{n})}{dx} = n {x}^{n - 1}}} \\

• And –

  \\ \large\longrightarrow \: { \boxed{ \tt  \dfrac{d(u.v)}{dx} =u \dfrac{dv}{dx} + v \dfrac{du}{dx} }} \\

• So that –

  \\ \tt\implies  \dfrac{dP}{dx} = 3 {x}^{2} +  \bigg \{ {x}^{2}  \dfrac{d(\tan x)}{dx} +  \tan x\dfrac{d( {x}^{2} )}{dx}  \bigg \} +1+ \sec^{2}(x) \\

  \\ \tt\implies  \dfrac{dP}{dx} = 3 {x}^{2} +  \bigg \{ {x}^{2}\sec^{2}(x)+  (\tan x)(2x)\bigg \} +1+ \sec^{2}(x) \\

  \\ \tt\implies  \dfrac{dP}{dx} = 3 {x}^{2} + {x}^{2}\sec^{2}(x)+2x\tan(x)+1+ \sec^{2}(x) \\

  \\ \large\implies { \boxed{ \tt \dfrac{dP}{dx} = 3 {x}^{2} + ({x}^{2} + 1)\sec^{2}(x)+2x\tan(x)+1}}\\


amansharma264: Great
BrainlyPopularman: Thanks
pulakmath007: Brilliant
BrainlyPopularman: Thank you sir :)
Similar questions