Math, asked by sabeenacharya706, 10 months ago

find the derivatives from first principle : cos²x​

Answers

Answered by rajsingh24
25

Answer:

dude see the attachment......

Attachments:
Answered by lublana
9

f'(x)=-sin2x

Step-by-step explanation:

Let f(x)=cos^2x

f(x+h)=cos^2(x+h)

Derivative of function by  first principle

f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}

Using the formula

f'(x)=\lim_{h\rightarrow 0}\frac{cos^2(x+h)-cos^2x}{h}

f'(x)=\lim_{h\rightarrow 0}\frac{(cos(x+h)-cosx)(cos(x+h)+cosx)}{h}

Using identity: a^2-b^2=(a+b)(a-b)

f'(x)=\lim_{h\rightarrow 0}\frac{-2sin(\frac{2x+h}{2})sin\frac{h}{2}\times 2cos(\frac{2x+h}{2}cos\frac{h}{2}}{h}

Using identity:

cosx-cosy=-2sin\frac{x+y}{2}sin\frac{x-y}{2}

cosx+cosy=2cos\frac{x+y}{2}cos\frac{x-y}{2}

f'(x)=\lim_{h\rightarrow 0}\frac{-sin2(\frac{2x+h}{2})sin\frac{h}{2}cos\frac{h}{2}}{\frac{h}{2}}

By using formula:2sinxcosx=sin2x

f'(x)=\lim_{h\rightarrow 0}(-sin(2x+h))\times\lim_{h\rightarrow 0}\frac{sin\frac{h}{2}}\frac{h}{2}}

f'(x)=-sin2x

By using \lim_{h\rightarrow 0}\frac{sinx}{x}=1

#Learns more:

https://brainly.in/question/1404661

Similar questions