Math, asked by shashankmalik2509, 2 months ago

Find the derivatives of 1(x^3+sin)^2

Answers

Answered by Anonymous
8

Answer:

2(x³ + sin(x))(3x² + cos(x))

Step-by-step explanation:

As per the information provided in the question, We have :

  • y = 1(x^3+sin)^2

we are asked to find d/dx with respect to y.

In order to find the derivative, We will use chain rule.

It is given by –

\begin{gathered}\longmapsto \rm  \dfrac{d}{dx}(y) = f'(g(x)) \times  \frac{d}{dx} g(x) \end{gathered}

By applying the rule,

\begin{gathered}\longmapsto \rm  \dfrac{d}{dx}(y) =  {x}^{3}  +  \sin(x)  \frac{d}{dx} ( {x}^{3}  +  \sin(x) ) \times 2 \end{gathered}

Derivating the secondary function,

\begin{gathered}\longmapsto \rm  \dfrac{d}{dx}(y) =2 ( {x}^{3}  +  \sin(x)) ( 3 \times {x}^{3 - 1}  +  \cos(x) ) \end{gathered}

\begin{gathered}\longmapsto \rm  \dfrac{d}{dx}(y) =2 ( {x}^{3}  +  \sin(x)) ( 3 {x}^{2}  +  \cos(x) ) \end{gathered}

∴ The derivative of 1(x^3+sin)^2 is 2(x³ + sin(x))(3x² + cos(x)).

Learn more!

\begin{gathered}\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Differentiation  \:formulae:}}\\\\\bigstar\:\:\sf{ \dfrac{d}{dx}   \times {{x}^{n}}=n\times{x}^{n-1}}\\\\\bigstar\:\:\sf{ \dfrac{d}{dx}({x})=1}\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( { Cons}) =0\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {log(x)}) =\dfrac{1}{x} \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sqrt{x}} )=\dfrac{1}{2 \sqrt{x}}\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sin(x)})=\cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cos(x)})=-\sin(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sin(x)})=\cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\tan(x)})={\sec}^{2}(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cot(x)})=-{ \cosec}^{2}(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sec(x)})=\sec(x)\times  \tan(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cosec(x)})= - \cosec(x)\times\cot(x)\end{array}}\end{gathered}

Similar questions