Math, asked by kavya8919399477, 23 hours ago

find the derivatives of log(x^2+x+2/x^2-x+2)​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm \: log\bigg(\dfrac{ {x}^{2}  + x + 2}{ {x}^{2}  - x + 2}  \bigg)

Let assume that

\rm \: y \:  =  \: log\bigg(\dfrac{ {x}^{2}  + x + 2}{ {x}^{2}  - x + 2}  \bigg)

We know,

\boxed{\tt{  \: log \frac{x}{y} = logx - logy \: }} \\

So, using this result, we have

\rm \: y = log( {x}^{2} + x + 2) - log( {x}^{2} - x + 2)

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx} y =\dfrac{d}{dx} log( {x}^{2} + x + 2) -\dfrac{d}{dx} log( {x}^{2} - x + 2)

We know,

\boxed{\tt{  \:  \:\dfrac{d}{dx} logx \:  =  \:  \frac{1}{x} \: }} \\

So, using this result, we have

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ {x}^{2} + x + 2}\dfrac{d}{dx}( {x}^{2} + x + 2) -  \dfrac{1}{ {x}^{2}  - x + 2}\dfrac{d}{dx}( {x}^{2} - x + 2) \\

We know,

\boxed{\tt{  \:  \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ {x}^{2} + x + 2}( 2x + 1 + 0) -  \dfrac{1}{ {x}^{2}  - x + 2}( 2x - 1 + 0) \\

\rm \: \dfrac{dy}{dx} = \dfrac{2x + 1}{ {x}^{2} + x + 2} -  \dfrac{2x - 1}{ {x}^{2}  - x + 2} \\

\rm \: \dfrac{dy}{dx} = \dfrac{(2x + 1)( {x}^{2}  + 2 - x) - (2x - 1)({x}^{2} + 2 + x) }{({x}^{2} + 2 + x)( {x}^{2} + 2 - x) }\\

\rm \: \dfrac{dy}{dx} = \dfrac{2x( {x}^{2}  + 2 - x -  {x}^{2} - 2  -  x) +  {x}^{2} + 2 - x +  {x}^{2} + 2 + x}{({x}^{2} + 2)^{2} -  {x}^{2}  }\\

\rm \: \dfrac{dy}{dx} = \dfrac{2x( - 2x) + 2{x}^{2} +4}{{x}^{4} +4 +  {4x}^{2}  -  {x}^{2}  }\\

\rm \: \dfrac{dy}{dx} = \dfrac{ -  {4x}^{2}  + 2{x}^{2} +4}{{x}^{4} +4 +  {3x}^{2}}\\

\rm \: \dfrac{dy}{dx} = \dfrac{ - 2{x}^{2}  + 4}{{x}^{4} +  {3x}^{2} + 4}\\

\rm \: \dfrac{dy}{dx} = \dfrac{ - 2( {x}^{2} - 2)}{{x}^{4} +  {3x}^{2} + 4}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by jaswasri2006
2

REFER THE GIVEN ATTACHMENTS

Attachments:
Similar questions