Math, asked by riddhibavaghela, 2 months ago

find the derivatives of root tan x . ( write properly in page , plz )

Answers

Answered by unknown2429
1

Answer:

 \frac{ {( \sec(x)) }^{2} }{ \sqrt{ \tan(x) } }

Step-by-step explanation:

My handwriting is very bad so I thought of texting the whole answer

in order to find the differential of root tan x we need to know the chain rule.

it states that

 \frac{dy}{dx} (f(g(x)) =  \frac{ df}{dg}  \times  \frac{dg}{dx}

Lets take an example

 \frac{d({2x + 1}^{2}) }{dx}  =  \frac{da}{db}  \times  \frac{db}{dx}

here

a =  {b}^{2}  =  {(2x + 1)}^{2}  \\ b = 2x + 1

so

 \frac{da}{db}  =  \frac{d( {b}^{2}) }{db}  = 2 {b}^{2 - 1}  = 2b

and

 \frac{db}{dx}  =  \frac{d}{dx} (2x) +  \frac{d}{dx} (1) \\  = 2 + 0 = 2

similarly,

 \frac{dy}{dx}  =  \frac{dy}{dz}  \times  \frac{dz}{dx}

where

y =  \sqrt{ z } =  \sqrt{ \tan(x) }   \\ z =  \tan(x)

we know

 \frac{dy}{dz}  =  \frac{d}{dz} ( \sqrt{z} ) =  \frac{d}{dz} ( {z}^{ \frac{1}{2} } )  \\ =  \frac{1}{2}  \times  {z}^{ \frac{1}{2}  - 1}  =  \frac{1}{2}  \times  {z}^{ -  \frac{1}{2} } \\   =  \frac{1}{ \sqrt{z} }  =  \frac{1}{ \sqrt{ \tan(x) } }

and

 \frac{dz}{dx}  =  \frac{d}{dx} ( \tan(x))  =  { \sec(x) }^{2}

so the final answer is

 \frac{ dy }{dx}  =  \frac{ { (\sec(x)) }^{2} }{ \sqrt{ \tan(x) } }

Please mark me as the brainliest

Similar questions