Math, asked by amitkumardhobi191, 3 months ago

Find the derivatives of sin2nx÷cos^2nx​

Answers

Answered by assingh
23

Topic :-

Differentiation

To Differentiate :-

y=\dfrac{\sin (2nx)}{\cos^2(nx)}

Solution :-

y=\dfrac{\sin (2nx)}{\cos^2(nx)}

y=\dfrac{2\sin (nx)\cdot\cos (nx)}{\cos^2(nx)}

(\because \sin2\theta=2\sin\theta\cdot\cos\theta)

y=\dfrac{2\sin (nx)}{\cos(nx)}

y=2\tan (nx)

\left( \because \dfrac{\sin \theta}{\cos \theta}=\tan \theta\right)

\dfrac{dy}{dx}=\dfrac{d(2\tan (nx))}{dx}

\dfrac{dy}{dx}=2\cdot\dfrac{d(\tan (nx))}{dx}

\left( \because \dfrac{d(k\cdot f(x))}{dx}=k\cdot\dfrac{d(f(x))}{dx},where\:k\:is\:a\:constant.\right)

\dfrac{dy}{dx}=2\cdot \sec^2(nx)\cdot\dfrac{d(nx)}{dx}

\left(\because \dfrac{d(\tan t)}{dx}=\sec^2t\cdot \dfrac{dt}{dx}\right)

\dfrac{dy}{dx}=2\cdot \sec^2(nx)\cdot n\cdot \dfrac{dx}{dx}

\left( \because \dfrac{d(k\cdot f(x))}{dx}=k\cdot\dfrac{d(f(x))}{dx},where\:k\:is\:a\:constant.\right)

\dfrac{dy}{dx}=2n\cdot \sec^2(nx)

\left(\because \dfrac{dx}{dx}=1 \right)

Answer :-

\underline{\boxed{\dfrac{dy}{dx}=2n\cdot \sec^2(nx)}}

Similar questions