Math, asked by Anonymous, 1 day ago

Find the derivatives of
√x and ㏒x using first principle

Answers

Answered by AllenGPhilip
31

Answer:

Step-by-step explanation:

Let y = f(x) be a function . If h or (Δx) be a small increment in x and the corresponding increment in y or f(x) be Δy = f( x + h ) then the derivative of f(x) is defined as

  • \boxed{\lim_{h\to 0} = \frac{f(x+h) - f(x)}{h}}

Let f(x) = \sqrt{x}

then f( x + h ) = \sqrt{x + h}

f'x = \lim_{h\to 0} = \frac{f(x+h) - f(x)}{h}

\lim_{h\to 0} = \frac{\sqrt{x + h} - \sqrt{x}  }{h}

\lim_{h\to 0} = \frac{\sqrt{(x + h}-\sqrt{x} )\sqrt{(x + h})+\sqrt{x}  }{h(\sqrt{x+h}+\sqrt{x}  }

\lim_{h\to 0} = \frac{x + h - x}{h(\sqrt{x + h}+\sqrt{x}  }

\lim_{h\to 0} = \frac{1}{\sqrt{x + h}+\sqrt{x}  }

\boxed{ \frac{1}{2\sqrt{x} }}

Thus derivative of \sqrt{x} = \frac{1}{2\sqrt{x} }

------------------------------------------

  • log (x)

f(x) = log x

f(x + h) = log (x + h)

\lim_{h\to 0} = \frac{f(x+h) - f(x)}{h}

\lim_{h\to 0} = \frac{log(x + h)-log x}{h}

\lim_{h\to 0} = \frac{log(\frac{x + h}{x}) }{h}

\lim_{h\to 0} = \frac{1}{h} [log(1+\frac{h}{x} )]

Let \frac{h}{x} = t

i.e. h = tx

f'(x) = \lim_{h\to 0} \frac{1}{tx}log (1 + t) = \frac{1}{x}

\boxed{ \frac{1}{x}}

Thus derivative of log (x) = = \frac{1}{x}

------------------------------------------

Similar questions