Math, asked by svishnuvarathan, 3 months ago

find the derivatives of:x^y=y^x​

Answers

Answered by Anonymous
2

 \bold {xy \: . \: yx}

 \bold{Taking  \: log  \: on  \: both  \: sides - }

 \bold{y \: logx \: = \: x \: log y.}

 \bold{Differentiating  \: both  \: the  \: sides \:  by \:  uv \:  rule}

 \bold{⇒ \:y. \dfrac{1}{x}  +  log_{x} \: . \dfrac{dy}{dx}   = x. \dfrac{1}{y} \:  \dfrac{dy}{dx}   +  log_{y}} \\  \\  \bold{⇒ \frac{y}{x} -  log_{y} =  \frac{x}{y} . \frac{dy}{dx} -  log_{x}  \:  \frac{dy}{dx} } \\  \\  \bold{⇒ \:  \frac{y - x \:  log_{y} }{x} \:  =  \:  \frac{dy}{dx}   \: ( \dfrac{x - y \:  log_{x} }{y}) } \\  \\  \bold{⇒ \:  \frac{dy}{dx}  \:  =  \:  \dfrac{ \dfrac{y - x \:   log_{y} }{x} }{ \dfrac{x - y \:  log_{x} }{y} } } \\  \\  \bold{⇒ \frac{dy}{dx} \:  =  \:  \frac{x}{y}   \:  \:  (\frac{y - x \:  log_{y} }{x - y \:  log_{x} }  )}

Similar questions