Math, asked by PragyaTbia, 1 year ago

Find the derivatives w.r.t.x:
\rm \frac{e^{x}}{1+x^{5}}

Answers

Answered by Anonymous
0
HOPE IT HELPS U ✌️✌️✌️
Attachments:
Answered by sonuojha211
0

Answer:

\rm \dfrac{d}{dx}\left ( \dfrac {e^x}{1+x^5}\right)=\dfrac{e^x(1+x^5-5x^4)}{(1+x^5)^2}.

Step-by-step explanation:

Given function:

\rm \dfrac{e^{x}}{1+x^{5}}

The derivative of a function which is in fraction, such as, \rm \dfrac{f(x)}{g(x)} is given by

\rm \dfrac{d}{dx}\left ( \dfrac {f(x)}{g(x)}\right) = \dfrac{g(x)\dfrac{d}{dx}(f(x))-f(x)\dfrac{d}{dx}(g(x))}{g^2(x)}.

Here, we have,

\rm f(x)=e^x\\ g(x)=1+x^5.

Therefore,

\rm \dfrac{d}{dx}\left ( \dfrac {e^x}{1+x^5}\right) = \dfrac{(1+x^5)\dfrac{d}{dx}(e^x)-e^x\dfrac{d}{dx}(1+x^5)}{(1+x^5)^2}\\=\dfrac{(1+x^5)e^x-e^x(5x^4)}{(1+x^5)^2}\\=\dfrac{e^x(1+x^5-5x^4)}{(1+x^5)^2}.\\

Similar questions