Math, asked by shreyahegde16, 10 months ago

find the derivativey=√(4x - 7)​

Answers

Answered by DrNykterstein
6

 \sf \rightarrow \quad y =  \sqrt{4x - 7}  \\  \\ \sf \rightarrow \quad y' =   \frac{d( \sqrt{4x - 7}) }{dx}    \\  \\ \sf \rightarrow \quad y'   = \frac{d{(4x - 7)}^{ \frac{1}{2} } }{d(4x - 7)}  \cdot  \frac{d(4x - 7)}{dx}  \qquad  \quad \bigg[  \because  \frac{dy}{dx}  =  \frac{dy}{du} \cdot  \frac{du}{dx}   \bigg] \\  \\ \sf \rightarrow \quad y'   =  \frac{1}{2} \cdot  {(4x - 7)}^{  - \frac{1}{2}}   \cdot  \bigg(\frac{d(4x)}{dx}  -  \frac{d(7)}{dx}  \bigg) \\  \\ \sf \rightarrow \quad y'  =  \frac{1}{ \cancel{2}_{1}  \sqrt{4x - 7} }  \times  \cancel{4}^{2} \qquad  \quad \big[  \because  {a}^{ - m}  =  \frac{1}{ {a}^{m} }  \big] \\  \\ \sf \rightarrow \quad y'  =  \frac{2}{ \sqrt{4x - 7} }  \times  \frac{ \sqrt{4x - 7} }{ \sqrt{4x - 7} }  \\  \\ \sf \rightarrow \quad y'  =  \frac{2 \sqrt{4x - 7} }{4x - 7}  \\  \\  \\    \underline{ \sf Some \:  Formulae}- \\   \\  \star \quad  \sf \frac{d(cos \: x)}{dx}  =  - sin \: x \\  \\  \star \quad \sf  \frac{d(sin \: x)}{dx}  = cos \: x \\  \\  \star \quad \sf  \frac{d(ln \: x)}{dx}  =  \frac{1}{x}  \\  \\  \star \quad \sf  \frac{d(u + v)}{dx}  =  \frac{du}{dx}  +  \frac{dv}{dx}  \\  \\   \star \quad \sf  \frac{d(tan \: x)}{dx}  =  {sec}^{2}  \: x \\  \\  \star \sf \quad  \frac{d(cot \: x)}{dx}  =  -  {cosec}^{2}  \: x  \\  \\  \star \sf \quad  \frac{d( {e}^{x}) }{dx}  =  {e}^{x}  \\  \\  \star \quad \sf  \frac{da}{dx}  = 0 \\  \sf \qquad where, \: a = constant

Answered by anshu24497
1

 \huge \mathfrak{ \green{Solution}}

\sf \longrightarrow{ \purple{ \quad y = \sqrt{4x - 7}}}

\sf \longrightarrow{ \purple{ \quad y' = \frac{d( \sqrt{4x - 7}) }{dx}}}

\sf \longrightarrow { \purple{\quad y' = \frac{d{(4x - 7)}^{ \frac{1}{2} } }{d(4x - 7)} \cdot \frac{d(4x - 7)}{dx} \qquad \quad \bigg[ \because \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \bigg] }}

\sf \longrightarrow{ \purple{ \quad y' = \frac{1}{2} \cdot {(4x - 7)}^{ - \frac{1}{2}}\cdot\bigg(\frac{d(4x)}{dx} - \frac{d(7)}{dx} \bigg) }}

\sf \longrightarrow { \purple{\quad y' = \frac{1}{ \cancel{2}_{1} \sqrt{4x - 7} } \times \cancel{4}^{2} \qquad \quad \big[ \because {a}^{ - m} = \frac{1}{ {a}^{m} } \big] }}

 \sf \longrightarrow { \purple{\quad y' = \frac{2}{ \sqrt{4x - 7} } \times\frac{ \sqrt{4x - 7} }{ \sqrt{4x - 7} }}}

\sf \longrightarrow { \red{\quad y' = \frac{2 \sqrt{4x - 7} }{4x - 7} }}

\begin{gathered}\tiny\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\\begin{gathered} \underline{ \color{navy}{{ \sf Some \: More \: Formulae \:  - }}} \\ \\ \star \quad \sf \frac{d(cos \: x)}{dx} = - sin \: x \\ \\ \star \quad \sf \frac{d(sin \: x)}{dx} = cos \: x \\ \\ \star \quad \sf \frac{d(ln \: x)}{dx} = \frac{1}{x} \\ \\ \star \quad \sf \frac{d(u + v)}{dx} = \frac{du}{dx} + \frac{dv}{dx} \\ \\ \star \quad \sf \frac{d(tan \: x)}{dx} = {sec}^{2} \: x \\ \\ \star \sf \quad \frac{d(cot \: x)}{dx} = - {cosec}^{2} \: x \\ \\ \star \sf \quad \frac{d( {e}^{x}) }{dx} = {e}^{x} \\ \\ \star \quad \sf \frac{da}{dx} = 0 \\\\ \sf where, a = constant \end{gathered} {}\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}

Similar questions