Math, asked by priyanka2002joshi, 3 months ago

Find the derrivative of y= cosx^3.sin^2(x^5) ​

Answers

Answered by Anonymous
20

Question:

Find the derivative of  y=cosx^3.sin^2(x^5)

 \huge \underline{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \:}

We will use product rule.

Let  cosx^3 be u and  sin^2(x^5) be v.

Now, the question is:

Differentiate y=uv.

y'= uv' + vu' (product rule)

 \huge \underline{\: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

Let's differentiate u and v separately,we will later put the values.

 \sf u'= (cosx^3)' \\\\\sf  \implies (x^3)' (-sinx^3) \\\\\sf  \implies  \color{blue}- sinx^3. 3x^2 \\\\\sf \boxed{Done}

 \huge \underline{\: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

Now, come to v'

 \sf v'= (sin^2(x^5))' can~ be ~written ~as ((sinx^5)^2)' \\\\\sf  \implies 2sinx^5. (sinx^5)' \\\\\sf  \implies 2sinx^5.cosx^5.(x^5)' \\\\\sf  \implies 2sinx^5.cosx^5. 5x^4\\\\\sf   \implies2.5x^4.sinx^5.cosx^5. \\\\\sf  \implies \color{red} 10x^4.sinx^5.cosx^5 \\\\\sf \boxed{And ~it's~ done.}

 \huge \underline{\: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

Now, just put the values in y'= uv' + vu'

 \sf y'= cosx^3( \color{red}{10x^4.sinx^5.cosx^5} ) \color{black} +sin^2(x^5)( \color{blue}{-sinx^3. 3x^2} ) \\\\\sf   \implies \boxed{ y'=10x^4.cosx^3.cosx^5.sinx^5- sin^2x^5.sinx^3.3x^2}

 \huge \underline{\: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

©Ankitraj707

Similar questions