Math, asked by Royanshuman205, 10 months ago

find the desriminant of the following and hence find the nature of roots 16 X square - 40 X + 25 equal to zero

Answers

Answered by Anonymous
3

\large{\underline{\bf{\purple{Given:-}}}}

  • p(x)= 16x² - 40x +25

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • Nature of roots .
  • Discriminant

\huge{\underline{\bf{\red{Solution:-}}}}

D = b²- 4ac

  • a = 16
  • b = -40
  • c = 25

➝ D = -40² -4 × 16× 25

➝ D = 1600 - 4 × 400

➝ D = 1600 - 1600

D = 0

So the equation have two real and equal roots.

━━━━━━━━━━━━━━

Extra information:-

D > 0

Nature of roots :- Real and unequal .

Roots :- \bf\frac{-b\pm\:\sqrt{D}}{2a}

D = 0

Nature of roots :- Real and equal

Roots:-\bf\frac{-b}{2a}

➝ D <0

Nature of roots :- No real roots

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ value \ of \ Discriminant \ is \ 0}

\sf{and \ roots \ are \ real \ and \ equal.}

\sf\blue{Explanation:}

\sf{Determinant=b^{2}-4ac}

\sf{If, \Delta&gt;0, \ Roots \ are \ real \ and \ distinct.}

\sf{\Delta=0, \ Roots \ are \ real \ and \ equal.}

\sf{\Delta&lt;0, \ Roots \ are \ not \ real.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{16x^{2}-40x+25=0}}

\sf\pink{To \ find:}

\sf{Discriminant \ and \ nature \ of \ roots.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{16x^{2}-40x+25=0}}

\sf{Here, \ a=16, \ b=-40 \ and \ c=25}

\sf{Discriminant (\Delta)=b^{2}-4ac}

\sf{\Delta=-40^{2}-4(16)(25)}

\sf{\Delta=1600-1600}

\sf{\Delta=0}

\sf\purple{\tt{\therefore{The \ value \ of \ Discriminant \ is \ 0}}}

\sf\purple{\tt{and \ roots \ are \ real \ and \ equal.}}

Similar questions