Math, asked by Anonymous, 6 months ago

find the diagonal of cuboid​

Attachments:

Answers

Answered by Anonymous
1

Question given:

To find the diagonal of the cuboid given.

Given:

  • Lenght= 8 cm
  • Breadth= 6 cm
  • Height= 2 cm

To find:

  • →The diagonal AG of cuboid.

Solution:

We know that,

\rm\blue{Diagonal~of~cuboid=}\sqrt\blue{l²+b²+h²}

According to Question:

\rm{Diagonal~of~cuboid=}\sqrt{l²+b²+h²}

Putting the values,

\rm{Diagonal~of~cuboid=}\sqrt{(8)²+(6)²+(2)²}

\rm{Diagonal~of~cuboid=}\sqrt{64+36+4}

\rm{Diagonal~of~cuboid=}\sqrt{100+4}

\rm{Diagonal~of~cuboid=}\sqrt{104}

\rm{Diagonal~of~cuboid=2}\sqrt{26}cm

_____________________

\sf\underline\red{More~information:-}

Cuboid:

A solid attached by six rectangular plane faces is known as a cuboid.

\rm\mapsto{Volume~of~cuboid=(length+breadth+height)cubic~units.}

\rm\mapsto{Diagonal~of~cuboid=}\sqrt{l²+b²+h²}

\rm\mapsto{Total~surface~area~of~cuboid=2(lb+bh+lb)}

\rm\mapsto{Lateral~surface~area~of~cuboid=[2(l+b)×h]}

▬▬▬▬▬▬▬▬▬▬▬▬

⠀⠀⠀Hope it's helpful

Answered by Anonymous
38

Answer:

Given:

Lenght= 8 cm

Breadth= 6 cm

Height= 2 cm

To find:

→The diagonal AG of cuboid.

Solution:

We know that,

 \rm {Diagonal \: of \: the \:cuboid} = \sqrt {l² + b² + h²}

Putting the values,

\rm{Diagonal~of~cuboid=}\sqrt{64+36+4}

\rm{Diagonal~of~cuboid=}\sqrt{100+4}

\rm{Diagonal~of~cuboid=}\sqrt{104}

\rm{Diagonal~of~cuboid=2}\sqrt{26}

Similar questions